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Modelling of microstructure evolution
in hot deformation

By H. R. Shercliff and A. M. Lovatt
Department of Engineering, University of Cambridge,

Trumpington Street, Cambridge CB2 1PZ, UK

This paper reviews various approaches to the modelling of microstructure evolution
in hot deformation, for the purpose of predicting the flow stress during deformation
or for predicting the subsequent annealing behaviour. Two contrasting approaches
are discussed, and illustrated for the example of hot plane-strain compression test-
ing of Al–Mg alloy. These approaches are (i) physically based state variable models,
in which the microstructure and property evolution is modelled explicitly; and (ii)
advanced statistical methods, for linking processing conditions empirically to prop-
erties, or to annealing rate and final microstructure.

The state variable models illustrate some general features of microstructure mod-
elling and the level of experimental work that goes with it. Of particular importance
are the accuracy of the data used to calibrate or validate a model, the implications
that this makes on the volume of data needed, and the viable level of detail in the
model that can realistically be verified. Various sensitivity analyses will be used to
illustrate the need for a balanced view of model and experiment if a credible predic-
tive capability is to emerge.

The statistical methods provide no physical insight, but, nonetheless, warrant fur-
ther consideration for hot-deformation problems. They potentially provide a means
to optimize time-consuming experimental work, and may provide useful predictive
capabilities for industry rather sooner than can be expected from complex physically
based modelling.

Keywords: modelling; microstructure; deformation; state variable methods;
statistical methods; aluminium alloys

1. Introduction

Modelling of thermomechanical processing of metals is one of a number of industrial
materials modelling activities reviewed recently in response to the Technology Fore-
sight exercise (Shercliff 1997). This illustrated the breadth of industrial processes
and alloys for which there are common underlying challenges in process modelling.
Table 1 summarizes the dominant thermomechanical processes and alloys.

The level of model development varies greatly between processes and materials.
This largely reflects the volume of production in each alloy system, but also the
complexity of the deformation problem (e.g. flat rolling is more advanced than section
rolling or forging). Thus, steels and aluminium alloys dominate, but much is to be
gained by interaction across disciplines. Many industrial modelling challenges are
generic to most of the combinations in table 1, as summarized in table 2.

For many deformation processes, there is a view that continuum mechanics finite-
element (FE) methods are well established, both for simulating the manufacturing
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Table 1. Thermomechanical processes and alloy systems

processes materials

flat rolling steels
section rolling Al alloys
forging Ni alloys
extrusion Ti alloys
sheet forming intermetallics
machining metal matrix composites

(MMCs)
friction welding
‘standard tests’

(e.g. plane-strain compression (PSC))

Table 2. Major industrial modelling challenges in thermomechanical processing

component design-for-manufacture
design of dies and tooling
shape and property control
reduction of defects, higher productivity
coupling in software of design, processing
and product performance analysis

alloy development
scientific understanding

process itself and, also, the less obvious task of modelling the ‘standard tests’ used,
for example, to determine constitutive behaviour (Shercliff 1997; Ricks, this issue;
Melton, this issue; Beynon, this issue). The greatest limiting factors at the con-
tinuum level in all metal-forming analyses are poor characterization of interfacial
friction conditions (and to a lesser degree heat transfer), and the need for improved
models of material constitutive behaviour for complex deformation histories and for
inhomogeneous materials.

FE methods now provide sufficient information for many ‘mechanical’ problems,
such as load prediction, and for problems of flatness, residual stress, etc. By empir-
ical means, a modest degree of prediction of microstructure can be achieved; for
example, linking recrystallization after deformation to the average process condi-
tions. Figure 1 illustrates the interactions in thermomechanical process modelling at
this ‘macro’ level. Given the volume of detailed FE output about the distribution of
deformation and temperature history, there is great potential to exploit this output
for microstructure modelling (Shercliff 1997; Evans 1993). In most cases, microstruc-
ture modelling will be a ‘post-processing’ activity, but, in more complex situations,
microstructure prediction may be in parallel, determining the constitutive response
of the material in the next time-step. Figure 2 summarizes the additional connectiv-
ity in process modelling at this ‘micro’ level. It is clear that there is potentially great
‘added value’ that may be obtained by incorporating microstructure modelling, in
particular offering (a) wider scope for predicting properties, damage and subsequent
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Figure 1. Thermomechanical process modelling: sub-models and connectivity
at the ‘macro’ level.
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Figure 2. Thermomechanical process modelling: sub-models and connectivity
at the ‘micro’ level.

material processability, and (b) linking upstream and downstream material behaviour
through multi-stage process histories. It is the modelling interactions illustrated in
figures 1 and 2 that currently provide the most fertile opportunities for collaborative
research between academia and industry.
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2. Approaches to microstructure modelling

Many diverse approaches to modelling microstructure evolution in hot deformation
(and subsequent annealing) have been explored. Some are appropriate for coupling
directly to real process histories (as in figures 1 and 2), while others seek to simulate
the underlying physical behaviour under idealized conditions. The present discus-
sion is limited to empirical, state variable and statistical approaches to modelling
microstructure evolution, for prediction of flow stress and subsequent recrystalliza-
tion. Other microstructure modelling activities in hot deformation include (a) texture
prediction, which is a major field in its own right, (b) finite-element crystal plasticity
(Dawson et al . 1994; Bate, this issue), and (c) annealing simulation by Monte Carlo
methods (Rollett et al . 1989; Humphreys 1992), and cellular automata (Davies 1997).

(a) Empirical methods

The established empirical approach (Sellars 1990; McLaren & Sellars 1992) to
predicting flow stress during hot working and subsequent recrystallization is based
on the Zener–Hollomon parameter, Z:

Z = ε̇ exp(Qdef/RT ), (2.1)

where ε̇ and T are the average strain rate and temperature, respectively, and Qdef is
an activation energy characteristic of the material. Flow stress is commonly described
by an equation of the form

σ =
1
α′

arsinh
(
Z

Z∗

)1/n

, (2.2)

where α′, Z∗ and n are material constants. Recrystallized grain size, drex, and the
time to 50% recrystallization, t50 (a common measure of recrystallization kinetics),
are described by power laws:

drex = αda0ε
−bZc, (2.3)

t50 = βdp0ε
−qZ−r exp(Qdef/RT ), (2.4)

where d0 is the initial grain size, and ε is the von Mises equivalent strain. The other
parameters are empirical constants.

This approach bypasses the evolving microstructure altogether, and relies on a test
program covering the relevant ranges of strain, strain rate and temperature for each
material to calibrate the many fitting parameters. It is used industrially for flat rolling
of many steels, but is known to be unsatisfactory for rolling of aluminium alloys, and
for any metal deformation involving more complex strain paths. There is, therefore,
a well-established need for more sophisticated approaches to these problems.

(b) ‘Surrogate’ state variable methods

A more complex approach to modelling flow stress in aluminium alloys was demon-
strated by researchers at Alcoa (Sample et al . 1992), using internal state variables.
Differential evolution laws with strain for one or more state variables Si were pro-
posed, and the flow stress σ was then a function of the instantaneous values of
these variables. The state variables were ‘surrogate’ variables in the sense that they
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Microstructure evolution in hot deformation 1625

were deemed to represent the underlying evolution of dislocation structure, rather
than having a measurable physical meaning. The form of the evolution laws and the
coupling to flow stress were mathematical functions adjusted to fit test data for indi-
vidual alloys, but with no physical basis. The principal advantage over equation (2.2)
was the ability to follow transients in strain rate and temperature with reasonable
accuracy, but the approach offers no further physical insight, and is equally dependent
on alloy-specific test data. No development for modelling recrystallization behaviour
has been reported in the literature.

(c) ‘Physically based’ state variable methods

Modelling of microstructure evolution explicitly in differential form has been the
basis for most classical theories of work hardening and annealing. The internal state
variables are now physically meaningful quantities that can, at least in principle, be
measured by electron microscopy (dislocation densities and so on). Developments of
this approach can now benefit from the recent advances in microscopy, such as semi-
automated electron backscatter diffraction (EBSD), which enable substructures to
be quantified with far greater speed and precision. Differential physically based state
variable models have the potential to follow complex process histories and provide
a means of carrying microstructure explicitly from one processing stage to the next.
The use of physical state variables for modelling hot deformation and annealing of
Al–Mg alloys is discussed below.

(d) Advanced statistical methods

A quite different recent development is the application of artificial intelligence
methods to make predictions about materials processing. A variety of advanced
statistical methods are now available, which essentially enable nonlinear regression
analyses to be performed on complex data-sets. These methods, therefore, offer no
physical insight, but are, nonetheless, of interest, due to their ability to seek trends
in the data for multi-parameter problems, and to indicate the apparent importance
of each input to the problem on the basis of the data provided. Such approaches are
often regarded with deep suspicion or even hostility by physical metallurgists, while
industrialists who are used to empirical methods readily make use of them. Recent
work in hot working using artificial neural networks and ‘Gaussian process models’
is discussed further below. A preliminary analysis is conducted on the same data
for hot working and annealing of Al–Mg alloys, to explore whether these approaches
could be usefully developed in parallel.

3. Microstructural modelling in hot working and
annealing of Al–Mg alloys

(a) Status of physically based modelling

Hot deformation and annealing of non-heat-treatable aluminium alloys has been
extensively studied in recent years. The approach summarized here comes largely
from the research groups in Trondheim, Sheffield and Cambridge. There are three
separate modelling tasks: (a) describing evolution of deformation substructure, in
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1626 H. R. Shercliff and A. M. Lovatt

particular the subgrain size, dislocation density and subgrain boundary misorien-
tation; (b) coupling substructure to flow stress; and (c) predicting recrystallization
behaviour.

The Trondheim group (Nes et al . 1994; Nes 1995; Nes & Furu 1995) have used
evolution laws for subgrain size and dislocation density to study steady-state flow
stress in constant strain-rate hot deformation, when work hardening and dynamic
softening processes are balanced. Complex developments of this approach have been
proposed to provide a ‘universal’ model for work hardening (at constant strain rate)
across all deformation temperatures for pure FCC metals and Al–Mg alloys, based
on a statistical view of dislocation storage (Nes 1998; Marthinsen & Nes 1997). This
model introduces many adjustable parameters, and cannot yet be straightforwardly
applied in a practical context.

Recrystallization modelling by the same group has exploited the expanded data
acquisition of EBSD methods, to link recrystallized grain size and kinetics to sub-
structure; in terms of the average behaviour (Furu et al . 1990) and, more recently,
allowing for different texture components explicitly (Nes et al . 1994; Vatne et al .
1996). This reflects the dominant interest in the development of cube texture in hot
rolling of aluminium alloys for canstock.

The Sheffield group have approached hot working of aluminium alloys from a
background of FE analysis of the transient nature of the deformation history in flat
rolling; in terms of temperature, strain rate and strain path. The transient strain-rate
work (in collaboration with researchers in Cambridge) is summarized and developed
further in this paper; progress with strain-path effects is described elsewhere (Dav-
enport et al ., this issue).

(b) Conceptual framework of state variable models

A general form for a differential state variable model for hot deformation is
dS1

dt
= f1(S1, S2, . . . , T, ε̇),

dS2

dt
= f2(S1, S2, . . . , T, ε̇),

...


(3.1)

where Si represents the chosen measurable state variables. The quantity of most
interest during the deformation is the flow stress σ, which is described by a function
of the instantaneous values of the state variables:

σ = g1(S1, S2, . . . ). (3.2)

Subsequent static microstructure evolution may be described in various ways depend-
ing on the problem. For static recovery, a further differential evolution model for the
substructure could be used to explicitly link the dynamic to the static stage:

dS1

dt
= f3(S1, S2, . . . , T ),

dS2

dt
= f4(S1, S2, . . . , T ),

...


(3.3)
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Microstructure evolution in hot deformation 1627

Static recrystallization is driven by the substructure at the end of deformation, Sfi ,
which governs both the density of nuclei activated and the growth rate. This process
may be described by a differential evolution of the fraction recrystallized X, which
would be necessary if the temperature varied during annealing:

dX
dt

= f5(Sf1 , S
f
2 , . . . , X, T ). (3.4)

For isothermal annealing, it is sufficient to use an integrated form from which the
recrystallized grain size, drex, and the time to 50% recrystallization, t50, may be
inferred:

drex = g2(Sf1 , S
f
2 , . . . , T ),

t50 = g3(Sf1 , S
f
2 , . . . , T ).

}
(3.5)

As noted earlier, the first-order elements of the substructure in hot working of alu-
minium alloys are considered to be the subgrain size, δ, the dislocation density within
the subgrains, ρi, and the subgrain boundary misorientation θ. δ and θ can be mea-
sured relatively easily using modern SEM techniques, including their statistical dis-
tributions, while ρi presents more difficulties and needs conventional TEM. Extensive
microscopy on hot- and cold-worked aluminium has revealed considerable complexity
in subgrain structure (Hansen & Juul Jensen, this issue; Duly et al . 1996), but it may
prove sufficient to consider that the structure has two main subcomponents: geomet-
rically necessary and statistically stored dislocations. This is of particular importance
in characterizing and quantifying the development of misorientation with strain.

(c) Differential substructure evolution laws

The approach adopted by the Trondheim group (Nes et al . 1994; Nes 1995; Nes
& Furu 1995) for evolution of dislocation structures might be termed a ‘profit and
loss’ approach. For dislocation density, the evolution law contains a positive storage
term and a negative annihilation term, representing the independent processes of
work hardening and dynamic recovery. Subgrain size is treated similarly with terms
for subgrain refinement and for growth. In the simplest form, the evolution of each
state variable only depends on its own value and the deformation conditions:

dρi
dε

=
1
ε̇

(
dρ+

dt
+

dρ−

dt

)
=

1
ε̇
f1(ρi, ε̇, T ), (3.6)

dδ
dε

=
1
ε̇

(
dδ+

dt
+

dδ−

dt

)
=

1
ε̇
f2(δ, ε̇, T ). (3.7)

Misorientation is the least well-characterized of the three parameters, so it may
initially be assumed that a similar form of evolution law may be found:

dθ
dε

=
1
ε̇

(
dθ+

dt
+

dθ−

dt

)
=

1
ε̇
f3(θ, ε̇, T ). (3.8)

Given sufficient experimental data it may prove of interest to explore the separate
evolution of geometrically necessary and statistically stored dislocations. In steady
state, the storage and annihilation terms balance, so that steady-state values for δ
and ρi may be derived in terms of the Zener–Hollomon parameter, and linked to the
steady-state flow stress (Nes et al . 1994; Nes 1995; Nes & Furu 1995).
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1628 H. R. Shercliff and A. M. Lovatt

For transient deformation, the structure evolution is more complex, particularly if
the strain rate is varying in the early hardening part of the deformation when the sub-
structure and flow stress would in any case be evolving at constant strain rate. Rec-
ognizing this complexity, an alternative pragmatic approach has been investigated.
Zhu & Sellars (1996) noted that at constant strain rate, the observed microstruc-
ture was well approximated by an exponential evolution with strain, and proposed
a general equation of the form

Si = S0 + (Sss − S0)[1− exp(−ε/εSi)], (3.9)

where, in this instance, Si represented 1/δ, ρ1/2
i or θ. S0 and Sss are the initial

(ε = 0) and steady-state values of Si, respectively, and εSi is a characteristic strain
that controls the strain over which steady-state is reached. In view of the similarity
to the corresponding expression for flow stress, equation (3.9) might be termed a
‘microstructural Voce equation’.

Differentiating equation (3.9) gives a possible empirical form of evolution law. A
characteristic of the resulting evolution law is that the rate of change of microstruc-
ture scales with the difference between the current and the steady-state values (giving
an exponential approach to steady state at constant strain rate). While it is perhaps
physically unrealistic that the initial rate of accumulation of dislocations could be
governed by the eventual steady-state density, it does lead to a convenient general
form for substructure evolution laws:

dSi
dε

=
1
ε̇

(
dS+

i

dt
+

dS−i
dt

)
= f(ε̇, T )

([
Si
Si,ss

]a
−
[
Si
Si,ss

]b)
, (3.10)

where now Si = δ, ρi or θ (as before), and Si,ss is the steady-state value of Si.
This form of equation is convenient as the substructure values are normalized, being
equal to unity in steady-state. By appropriate choice of the constants a and b, both
increasing (ρi) and decreasing (δ) behaviour can be described. The form of f(ε̇, T ) will
depend on the relationship between steady-state structure and the Zener–Hollomon
parameter, commonly given by expressions such as

1/δss = A lnZ +B (3.11)
δss
√
ρi,ss = const. (the principle of similitude). (3.12)

The steady-state average misorientation may be assumed to be constant, for lack
of evidence to the contrary. Comparison with physically derived evolution laws for
δ and ρi (Nes et al . 1994; Nes 1995; Nes & Furu 1995) shows that equation (3.10)
approximates these if the following expressions are used.

For δ: f(ε̇, T ) ∝ Z1/2, a = −1, b = 2,

For ρi: f(ε̇, T ) ∝ Z−1/2, a = 1
2 , b = 3

2 .

Equation (3.10) can be used to describe transient strain rate and temperature
conditions, including strain-rate jumps (since the ‘instantaneous’ steady-state values
can be updated at every time-step). So even though the physical basis is limited,
this semi-empirical evolution law has the attraction of responding stably to varying
deformation conditions: the microstructure is always seeking to change to the current
‘equilibrium’, i.e. the steady-state microstructure that would evolve if the strain rate
stopped changing and was continued at a constant level.
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Microstructure evolution in hot deformation 1629

A preliminary application of this approach has been made for hot plane-strain
compression of Al–1%Mg alloy (Zhu et al . 1997). Equation (3.10) was calibrated
to constant strain-rate data for the evolution of δ, ρi and θ with strain, and then
applied to the substructure evolution in decreasing and increasing strain-rate tests.
The method captured the right trends, but the small amount of substructure data
and considerable uncertainty in the values did not provide a very rigorous test.

In view of the difficulty in validating evolution laws for substructure during tran-
sient deformation, continuous predictions of flow stress and recrystallization be-
haviour with strain could not be made with confidence. However, models for these
aspects were investigated by using the measured substructure data directly as input
to models for σ, drex and t50 (Furu et al . 1996, 1999). The recrystallization predic-
tions are summarized here, and used as an illustration of the need, in modelling,
for proper sensitivity analysis before reaching any conclusions about the level of
agreement between models and data.

(d) Recrystallization model

The recrystallization model adopted is the simplest form of that proposed by Furu
et al . (1990) and Vatne et al . (1996) for the prediction of drex and t50. This is summa-
rized in Appendix A. The experimental work is described in detail elsewhere (Baxter
et al . 1996, 1999). Figure 3 summarizes the critical transient experiments that the
model aimed to predict. Three strain-rate histories were applied at a temperature of
385 ◦C to the same final strain rate of 2.5 s−1 at a strain of 1.0, which was followed
by further deformation at that strain rate (figure 3a). It was found that following a
decreasing strain rate, a short transient in drex occurred (figure 3b), which followed
the observed transient in subgrain size. A longer transient in t50 was observed (fig-
ure 3c), which was consistent with a more prolonged transient in both ρi and θ. In
the significantly slower-increasing strain-rate tests, no transient in substructure or
subsequent recrystallization was observed.

The model summarized in Appendix A was calibrated to constant strain-rate data,
and then applied to the varying strain-rate data by substituting in the measured
values of δ, ρi and θ on a test-by-test basis. The predicted and measured values
of drex and t50 (from Furu et al . 1999) are compared in figure 4. Figure 4 shows
that, overall, the model captured the transients in recrystallized grain size, but the
kinetics was largely underestimated after decreasing strain-rate tests (predicted t50
being up to a factor of 2 too high). Some of this disagreement was possibly due to
systematic error in measuring dislocation density. However, it was only considered
meaningful to evaluate this disagreement in the light of a proper sensitivity analysis,
i.e. considering the uncertainties in the model predictions, due to uncertainties in
the measured substructure data used as input to the model. This uncertainty could
then be considered alongside that in the experimental recrystallization data, to see
if the disagreement between model and data was really significant. This aspect of
microstructural modelling is so rarely addressed in the literature that it is developed
further here to highlight its significance.

(e) Sensitivity analysis

Furu et al . (1999) conducted a sensitivity analysis by exploring the uncertainty in
the recrystallization model due to uncertainty in each of the substructure parameters.
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1630 H. R. Shercliff and A. M. Lovatt

Figure 3. Schematic summary of recrystallization behaviour after transient strain-rate testing of
Al–1%Mg: (a) strain-rate histories; (b) recrystallized grain size; (c) time to 50% recrystallization
(after Furu et al . 1999).
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Microstructure evolution in hot deformation 1631

Figure 4. Predicted versus measured recrystallization behaviour for constant and varying
strain-rate testing of Al–1%Mg: (a) recrystallized grain size; (b) time to 50% recrystallization
(after Furu et al . 1999).

Values were substituted in at the 95% confidence limits for each of δ, ρi and θ in
turn to calculate drex and t50. This gave valuable insight into the relative significance
of each of δ, ρi and θ, particularly since their measurement is laborious, so future
experimental work needs to be well focused. An estimate was also made of the overall
95% confidence limits for drex and t50 due to uncertainty in all of the parameters
combined. The analysis indicated that the low density of data and the size of the
uncertainty in the model for t50 made it difficult to reach any firm conclusions about
the validity of the kinetic model.

This sensitivity analysis is now taken further. Simple error bars at 95% confidence
limits tend to disguise the fact that values within the error bar are not equally
probable: they represent the limits of significance of a distribution (assumed to be
Gaussian). The models for drex and t50 combine many nonlinear functions of the
input parameters, so it is of interest to calculate the actual distribution of the model
predictions, rather than just finding a 95% confidence limit by propagation of errors.

The general problem of predicting the distribution of a model prediction given the
95% confidence limits on the inputs (which are assumed to be Gaussian) has been
addressed by a Monte Carlo technique, as follows. Each of the uncertain inputs was
assigned a mean value and a standard deviation. A numerical procedure was then
used to sample a value at random from each of the input distributions, which are
assumed to be independent. These are then used as a set of inputs to the model,
yielding a single predicted value. This procedure is repeated many times, generating a
probability distribution for the output. Eventually, the input parameter distributions
have been thoroughly sampled and a smooth output distribution is found. This may
take up to 100 000 or more iterations, depending on the number and uncertainties of
the inputs, and the nonlinearities of the model. This approach was adapted from a
technique for modelling the uncertainty in manufacturing cost using ‘activity-based
cost’ models (Emblemsv̊ag & Bras 1994), and has recently been used to illustrate
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Figure 5. Statistical distributions of predicted recrystallization behaviour at constant strain rate,
using a Monte Carlo approach to allow for uncertainty in the input parameters (d = initial grain
size; δ = subgrain size; θ = misorientation; ρi = dislocation density): (a) recrystallized grain
size, ε = 0.4; (b) recrystallized grain size, ε = 1.0; (c) time to 50% recrystallization, ε = 0.4
and 1.0.

the uncertainty in a model to predict the hardness of the heat-affected zone in steel
welds (Lovatt 1998).

Figure 5 shows the distributions of predicted recrystallized grain size and kinetics,
using the same test conditions as Furu et al . (1999), but now aggregating all of the
uncertainties via the Monte Carlo technique above. Uncertainties were included in
the three substructure parameters, and in the calibration constants in the model
(which were themselves based on observed microstructure). The figures show the
overall distribution in each case, superposed with the distribution generated when
individual input parameters are uncertain but the rest are assumed to have fixed
values. This indicates the relative significance of each parameter, and, hence, the
importance of its uncertainty, in determining the predicted result.

This analysis provides a new perspective on the quality of the model, compared
with assigning simple error bars. The cases shown in figure 5 are mostly near-
Gaussian, but the predictions for t50 are somewhat skewed, with a longer tail towards
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Table 3. Inputs and outputs in hot deformation and annealing

inputs outputs

composition flow stress
initial structure recrystallized grain size
deformation temperature recrystallization kinetics
deformation strain rate deformation and recrystallization texture
total strain (or strain path)
annealing temperature
annealing time

high predicted values. This is a result of assuming a ±95% confidence limit on the
misorientation, which then enters a log term in the stored energy (see Appendix A).

In summary, therefore, sensitivity analysis should be an essential part of micro-
structure modelling, and should be conducted with care, since nonlinearities in the
model can amplify the uncertainties assumed in the inputs. The analysis acts as an
important guide as to where further effort should be targeted, for example:

(i) Is the model or the data more uncertain, and which uncertainty could be
reduced most easily by further experiment?

(ii) Which of the substructure parameters are most significant to the problem?

(iii) What is the target accuracy in the substructure measurement to provide a
statistically significant test of the model?

Finally, this analysis serves as a reminder that further development of a differential
substructure model should not stop at an evaluation of the fit between model and
substructure, but should consider the consequences for the macroscopic properties
of interest, such as flow stress and recrystallization, which may not be particularly
sensitive to uncertainty in the substructure model.

4. Advanced statistical methods

A completely different approach to providing predictions of material behaviour is
to take the available data for process conditions and the required output behaviour
and to interrogate this database by statistical means. Empirical nonlinear regres-
sion methods have grown in sophistication, and merit exploration as tools for ‘data
mining’ in the field of thermomechanical processing, which is not short of data. The
essential task is to link multiple inputs directly to one of a number of outputs, where
the underlying physical behaviour is inherently complex. For the current problem
of hot deformation and annealing, the target inputs and outputs are summarized in
table 3.

The potential of artificial intelligence techniques has recently been explored for
hot deformation of selected alloys (Sabin et al . 1997, 1998; Bailer-Jones et al . 1997,
1998). The same methods are also being used for studying phase transformations in
steels, and toughness of steel welds, problems in which composition information has
been central to the analysis (Bhadeshia et al . 1995; Ichikawa et al . 1996; Gavard
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et al . 1996; Bailer-Jones et al . 1999). Two approaches based on Bayesian methods
have been illustrated: neural networks and Gaussian process models (the latter being
something of a misnomer in this field, since ‘process’ refers to the statistical process,
while some regard ‘models’ as an inappropriate term for an empirical technique).
Bayesian methods automatically embody a number of useful working principles for
materials processing problems: (a) the analysis seeks the minimum complexity con-
sistent with the data provided; (b) predicted outputs come with error bars indicating
the reliability of the prediction; and (c) an indication is given of the apparent impor-
tance of each input.

(a) ‘Static’ neural networks

Neural network architectures link a set of inputs to an output via a number of
‘hidden units’: parameters with no physical meaning, which are evaluated from the
inputs by means of weighted nonlinear transfer functions (usually hyperbolic tan
functions), and then linked to the output via a set of weighted linear functions.
The number of hidden units (and the number of layers of units) is open but can
be optimized to give the fairest representation of the data on various criteria while
avoiding over-fitting the data. Training a given network minimizes the squared errors
on the basis of the data provided and returns the transfer functions and weights. Once
trained, the network predicts the expected output (and its uncertainty) for any other
sets of input data using the trained functions and weights, without reference to the
original data. The term ‘static’ implies that single values of the process conditions
are used as inputs (for instance, final, average or maximum values), so that the
network has no knowledge of the path of the deformation; a limitation currently
being addressed by development of ‘dynamic’ neural networks (see below).

(b) Gaussian process models

Gaussian process (GP) models are a probabilistic variant of static neural network
methods. For a set of N observations, the model assumes the joint probability of these
observations is given by an N -dimensional Gaussian. Training the model consists of
finding a set of hyperparameters within the assumed statistical function. This is
done by maximizing the probability of the hyperparameters given the training data.
The apparent level of noise in the data may be inferred by the training exercise, or
known information on uncertainty can be fed into the analysis. Once trained, the
model returns a Gaussian probability distribution for the output, on the basis of the
data provided. GP models thus predict the most probable value of an interpolated
output, i.e. the centre of the predicted Gaussian distribution, with the standard
deviation being a measure of the uncertainty of the prediction. They do not fit a
set of functions and weights to represent the behaviour of the training data, like a
neural network, but use the original data (or a subset of it) to make each individual
prediction.

(c) ‘Dynamic’ neural networks

As noted earlier, the methods outlined above are considered to be ‘static’, since
the input and output values embody no information about the evolution of material
behaviour through the deformation and/or annealing processes. Static approaches
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may be sufficient for relatively ‘monotonic’ deformation, such as plane-strain com-
pression, or the centreline of flat-rolled products. However, given the strong path-
dependencies in processes such as forging, section rolling, or flat rolling (in the near-
surface regions), consideration has recently been given to developing a ‘dynamic’
neural network architecture with an added time dimension (Bailer-Jones et al . 1998;
Withers et al . 1998).

The objective in training a dynamic network is to capture the history dependence
of the problem, rather than using only final or average values of the process condi-
tions. This is achieved by introducing ‘state variables’, which evolve in parallel with
the known time-dependence of the process conditions (predicted by FE analysis).
The state variables may be a combination of readily measurable quantities (such as
grain boundary area per unit volume), and ‘surrogate’ variables, which are deemed
to capture the effect of underlying unmeasurable (or simply unmeasured) features.
A static neural network architecture is used to find the nonlinear functional depen-
dence between the current values of the state variables and the process conditions
(as inputs), and the time-derivative of the state variables (as outputs). Training the
network is then a recurrent process, optimizing the weights at each time-step and
calculating the next set of input values for the state variables from the predicted
derivatives. It is sufficient to provide an initial value and one other value during the
process for each measurable state variable in order for the network to ‘learn’ the
evolution law.

This approach has recently been tested for predicting the evolution of damage in
a forged MMC brake disc (Withers et al . 1998), using FE analysis to provide the
process history at a number of points in the component. This was a suitable first
problem since there was one measurable state variable, the damage (in terms of a
fraction of broken particles), and the required output was the state variable itself.
Since damage could both increase (due to tensile stress) and decrease (due to healing
of damage under compressive stress), the couplings between process conditions and
the state variable were non-trivial and provided a good test of the approach.

The progress reported so far with the dynamic neural network shows real promise,
but requires considerable development for characterizing hot-working problems gen-
erally. The method should be able to characterize the evolution of flow stress and
recrystallization behaviour during transient deformation by treating the flow stress,
or recrystallized grain size drex, as a state variable. The flow stress is clearly the
actual flow stress at the time, but, in the latter case, the state variable ‘drex’ implies
the recrystallized grain size at a point in the component if the deformation was
instantaneously stopped and the component was subsequently annealed. This needs
careful distinction from the actual current grain size, which would of course also be
evolving during deformation. Alternatively, real or surrogate state variables could be
used, and a functional dependence of the flow stress or drex on these state variables
incorporated.

Perhaps the better way forward is the hybrid approach, where the state variables
(and thus outputs of the dynamic network) are deemed to be actual or surrogate
features of the microstructure. These are then linked to the true desired output (flow
stress, recrystallization behaviour, etc.) by a separate function. Hence, the outputs
of the dynamic neural network become the inputs to a subsequent static calculation.
This mapping could be done by a physically based model, or could itself be an
empirical fit, such as a static neural network or GP model. The benefit of this hybrid
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Figure 6. Predicted versus measured recrystallization behaviour at constant strain rate, using
a Gaussian process model: (a) recrystallized grain size; (b) time to 50% recrystallization.

Figure 7. Predicted recrystallized grain size against strain at constant strain rate, using a Gaus-
sian process model: (a) predicted and measured data; (b) predicted trend with strain at each of
the three strain rates.

approach is that physical knowledge and data may be embedded in the problem
wherever it is readily available, and, hence, the maximum predictive capability from
these statistical methods is likely to be obtained.

(d) Preliminary application of Gaussian process software to Al–1%Mg data

Since a physically based model has been explored for the problem of hot plane-
strain compression of Al–1%Mg alloy, it is of interest to try one of the static statistical
methods on the same data-set. A preliminary analysis was, therefore, conducted
using the static Gaussian process software and the available data for σ, drex and
t50 at constant strain rate. A single alloy and a single deformation and annealing
temperature were used, so the only inputs are the strain rate and the strain (though
the analysis could extend to all of these variables given enough data).
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Figure 8. Predicted time to 50% recrystallization against strain at constant strain rate, using
a Gaussian process model: (a) predicted and measured data; (b) predicted trend with strain at
each of the three strain rates.

Figure 9. Predicted versus measured flow stress at constant strain rate, using
a Gaussian process model.

The Gaussian process software (Gibbs & Mackay 1998) was used to make two
types of prediction, given the data-set of measured outputs for all constant strain-
rate tests (at 0.25, 2.5 and 25 s−1): (a) the expected output for each of the input
combinations in the training set; (b) the expected evolution of each output with
strain, at each value of constant strain rate. Figures 6–9 show the results. In all
cases, the predictions were made using all of the available data as the evidence, since
the data-set is small.

Figure 6 shows the predicted versus measured values for drex and t50. The error bars
indicate the uncertainty inferred in the prediction (one standard deviation), and do
not reflect uncertainty provided on the input or output data. These may be compared
directly with the constant strain-rate data and physical model predictions from Furu
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et al . (1999), plotted in figure 4. This indicates that the statistical method captures
this relatively simple behaviour with equal certainty. Figures 7a and 8a show the
predicted and measured data plotted against strain (as in Furu et al . 1999), which
illustrate the limited scope and simple form of the original data-set.

When predictions are then made for the full strain range at all strain rates (fig-
ures 7b and 8b), it inspires some confidence to see that the uncertainty in the pre-
diction varies in a way that reflects the density of the underlying data. The model
is more confident of its predictions at the middle strain rate, where there are many
more data points. Furthermore, as the prediction is extrapolated outside the range
of the training data, the error bars grow; this is particularly marked at the higher
strains at the high and low strain rate. This inbuilt warning that predictions are
being made towards and beyond the fringes of the available data space is a great
advantage of the Bayesian approach. In a simple problem, such as the one illustrated
here, it is self-evident where the reasonable limits of the data lie, but in a multiple-
input problem this is not the case. It would certainly be beneficial if physically based
modelling was conducted with the same openness regarding the volume of data used
to calibrate the model, and to the confidence associated with the predictions of the
model.

Figure 9 shows the predicted versus the measured flow stress using the Gaussian
software. It is now expected that there is only a dependence on strain rate and not
on strain, since all of the data come from the steady-state region of the deformation.
Figure 9 shows that the statistical method infers this from the data: it returns a
virtually constant predicted value at each strain rate, having inferred (correctly)
that the variations with strain (which are not systematic with increasing strain) are
simply noise.

The transient strain-rate data could also be explored using the static analysis, by
taking as input strain rate the strain-averaged or time-averaged strain rate, or just the
final value. Of more general relevance, though, would be to use the dynamic neural
network approach to characterize this and more complex deformation histories, and
to link these to subsequent annealing behaviour. This is a matter of current research.

(e) Summary

This preliminary application of the Gaussian process model indicates that the
statistical method captured the constant strain-rate trends as well as the physical
model, and implied a ‘reasonable’ noise level in the data, and, thus, uncertainty in
its predictions. While the method gives no physical insight at all, models of this type
could serve various purposes:

(a) they may be sufficient in themselves for industrial data handling (an improve-
ment on the traditional ‘power law’ empirical fit, as allowable nonlinearities
are more complex);

(b) they give an alternative view of uncertainty in the data, and, thus, inform a
comparison of physically based models and experiment;

(c) they may allow the number of experiments to be reduced by picking out trends
in complex data-sets;
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(d) they provide a ‘significance test’ on parameters of the problem, i.e. a measure
of the apparent importance of different input parameters (similar to sensitivity
analysis).

5. Conclusions

Microstructural modelling offers many opportunities to add value to the advanced
FE analysis, which is becoming routine for hot working. Particular benefits include
a wider predictive capability for product properties and subsequent processability,
and the ability to link the steps in multi-stage processing. The long-term goal is
to replace current empirical prediction of flow stress and recrystallization behaviour
with physically based state variable models, which capture the essential material
behaviour explicitly, but in a simple form suitable for coupling to FE analysis.

Some progress has been made to develop a state variable model for hot working
in Al–Mg alloys. Fundamental differential microstructural evolution laws tend to be
too complex for industrial use, or are not properly validated. A pragmatic semi-
empirical approach may be sufficient to capture the first-order effects, but further
progress at any level requires access to semi-automated microscopy to provide exten-
sive substructure data, particularly for subgrain size and the distribution of subgrain
boundary misorientation.

Transient strain-rate testing in Al–1%Mg has demonstrated that substructure evo-
lution is more complex than in constant strain-rate testing, and, thereby, provides
a more rigorous modelling test as the microstructural state variables are decou-
pled. Current recrystallization models capture some of the main effects in transient
strain-rate deformation of Al–Mg. Physically based microstructural models establish
the level of microstructural complexity that is needed for a given problem. For the
problem of transient hot working of Al–1%Mg, recrystallized grain size is well charac-
terized by a knowledge of the subgrain size (and perhaps its statistical distribution),
whereas recrystallization kinetics requires a more complete picture of subgrain size,
misorientation distribution, and, to a lesser extent, dislocation density. Other materi-
als and processes might require different levels of detail; the guiding principle should
be to make the model as simple as possible for the given target predictive capability.

Sensitivity analysis is an essential modelling activity. A Monte Carlo procedure was
developed to illustrate the distribution of predicted output from the recrystallization
model for hot worked Al–1%Mg. This indicated where subsequent experimental effort
should be focused, and also demonstrated the dangers in placing too much confidence
in the minimum amount of data needed to calibrate the model. A much greater level
of data redundancy is needed (and, hence, semi-automated data gathering) before
firm conclusions could be drawn as to the adequacy or otherwise of the models.

Advanced statistical methods provide a contrasting view of the problem. Static and
dynamic neural networks, or Gaussian process models, are all being considered as
tools for providing predictive capability for industrial hot working on a shorter time-
scale than is likely to be achieved from a fundamental physically based approach. A
preliminary application of a Gaussian process model to the same data for hot worked
Al–1%Mg indicated that the trends in the data were quickly established, with the
added benefit of an automatic indication of the uncertainty of the prediction, and the
sensitivity of the prediction to the different inputs. The best way forward with these
advanced empirical tools may be via a hybrid approach, incorporating data for real
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measurable internal state variables and physical knowledge of material behaviour
wherever possible.
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Appendix A. Recrystallization model applied to
hot PSC of Al–1%Mg

The recrystallization model used for predicting recrystallization behaviour in tran-
sient strain-rate compression of Al–1%Mg (Furu et al . 1999) is summarized below.
The nucleation site density, Nv, is governed by the grain boundary area per unit
volume Sv (assuming grain boundary nucleation):

Sv(ε) = (2/d0)(exp(ε) + exp(−ε) + 1), (A 1)

where d0 is the initial grain size and ε is the strain. The probability of finding a
critically sized subgrain on the grain boundary depends on the average subgrain
size. An inverse square dependence was shown to be consistent with the data for
constant strain-rate deformation of Al–1%Mg, giving

Nv = (Cd/δ2)Sv(ε), (A 2)

where Cd is a calibration constant. The recrystallized grain size drex is then

drex = (1/Nv)1/3. (A 3)

The driving force for recrystallization is assumed to come from the stored energy of
the dislocations in the subgrain boundaries and the subgrain interiors. The stored
energy PD may be approximated by

PD = αγSB/δ + ρiΓ, (A 4)

where α is a constant (= 2). The sub-boundary energy γSB depends on the misori-
entation θ, and is given by

γSB =
Gb

4π(1− v)
θ(1 + ln(θc/θ)), (A 5)

where G is the shear modulus, b is the Burgers vector, v is Poisson’s ratio and θc is
a characteristic misorientation for high-angle boundaries (15◦).

The dislocation energy per unit length Γ is taken to be

Γ = 1
2Gb

2. (A 6)

The time to 50% recrystallization, t50, is then

t50 =
Ct

MGBPD

(
1
Nv

)1/3

, (A 7)

where Ct/MGB is a calibration constant.
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Discussion

D. Juul Jensen (Materials Research Department, Risø National Laboratory, Ros-
kilde, Denmark). Concerning Dr Ricks’s Monte Carlo sensitivity test, I wondered
what kind of effects an incorrect equation relating t0.5 or drex to the input parameters
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(δ, d, θ) will have on the resulting distributions—and thus can the distributions be
trusted?

H. R. Shercliff. The importance of the predicted distributions of t50 or drex is
that it is only possible to judge the validity of the models if the uncertainty in
both model and experiment is properly considered. It is true that a second level of
sensitivity analysis could be conducted, where the form of the equations is modified
to investigate other models. This should then include the altered sensitivity to the
input parameters.

J. H. Beynon (Department of Mechanical Engineering, University of Sheffield,
UK ). Dr Shercliff gave an example of a ‘Gaussian process model’ based on 12 mea-
sured data. The predictions included error bars which to me look overly optimistic.
Is this because Gaussian distributions are being used inappropriately, or because far
too few input data have been used?

H. R. Shercliff. The error bars are somewhat optimistic—with a small data-set
the analysis may tend to ‘over-fit’ the data. It is important not to read too much into
the predicted uncertainty in absolute terms. The analysis does show, however, that
the method can quickly explore combinations of parameters which have not been
tested, and gives a good indication of increasing relative uncertainty as predictions
are made further away from the training data.
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